Assignment 8 Solutions

1.

Ld/St

	Opcode
	Rs
	Rt
	Address Offset

Opcode is set to the opcode for either load or store.

Rt specifies the register which with get the value from memory for load instructions, or will provide the value to memory for stores.

Rs specifies a register whose value will be added to the offset value to provide the address to memory.

Arithmetic/Logic (register only operands)
	Opcode
	Rs
	Rt
	Rd
	shamt
	Funct

Opcode is set to the opcode for an arithmetic operation.

Rd specifies the register which with get the value from the alu operation

Rs and Rt specify registers whose values will be used in the operation.

Shamt is used to specify the amount to shift in a shift instruction.

Funct is used to determine which arithmetic or logical operation to use.

Arithmetic/Logic (immediate value)

	Opcode
	Rs
	Rt
	Immediate Value

Opcode is set to the opcode for the specific arithmetic with immediate instruction

Rt specifies the register which with get the value from the alu operation.

Rs specifies a register whose value will be used as an operand in the alu operation.
Immediate Value provides the other operand to the alu.

Branch

	Opcode
	Rs
	Rt
	Address

Opcode is set to the opcode for the branch instruction.

Rs and Rt specify the registers whose values will be compared in the branch instruction.

Address specifies the address (relative to the PC) that the program will jump to if the branch is successful.
Jump

	Opcode
	Target Address

Opcode is set to the opcode for jump.

Target Address specifies the address of the instruction the program will jump to.
2. a)
start:

lw $t0, mask

//$t0 = 0xfffff83f, 1….100000111111
lw $s0, shifter

//$s0 = sll instruction
and $s0,$s0,$t0
//clears the shamt field in the sll instruction stored in $s0
andi $s2,$s2,0x1f
//clear all but the last 5 bits in $s2
sll $s2,$s2,6

//move those bits to the position that corresponds to shamt
or $s0,$s0,$s2

//set the shamt field in $s0 as the value from $s2
sw $s0, shifter

//store the sll instruction back into memory
Self-modifying code such as this is a bad idea because you are changing code generated by the compiler and will make your program machine dependent.
	Instr
	Format
	Op
	Rs
	Rt
	Immed or Rd/Shamt/Func

	lw $t0, mask
	I
	35
	0
	$t0
	mask

	lw $s0, shifter
	I
	35
	0
	$s0
	shifter

	and $s0,$s0,$t0
	R
	0
	$s0
	$t0
	$s0
	0
	32

	andi $s2,$s2,0x1f
	I
	12
	$s2
	$s2
	31

	sll $s2,$s2,6
	R
	0
	0
	$s2
	$s2
	6
	0

	or $s0,$s0,$s2
	R
	0
	$s0
	$s2
	$s0
	0
	37

	sw $s0, shifter

	I
	43
	0
	$s0
	shifter

3. A possible name could be srreg $s0, $s1, for “shift right registers”. The instruction shifts both $s0 and $s1 right one bit, shifting the least significant bit of $s0 into the most significant bit of $s1. A diagram for the action is shown below.

4.

li $r4, 0
sum = 0

li $r5, 0
i = 0

li $r6, 10
n = 10

li $r7, 0x04000000 # address of array

loop:

beq $r5, $r6, end
end if i = 10

add $t0, $r5, $r7
calculate address of array[i]

lw $t0, 0($t0)

temp = array[i]

add $r4, $r4, $t0
sum = sum + temp

addi $r5, $r5, 1
increment i

j loop

jump to loop

end:

5.

Only F is true.
$s0

$s1

LSB$s1

LSB$s0

0

