CprE 381 Homework #7 Solution
1. In general, the answer is no. With very large memories, the cost of address decoding becomes significant. Also, using a large amount of SRAM will greatly increase energy usage and require more complicated cooling. However, either answer, if argued properly, is acceptable.

2. A program that accesses a large amount of memory (e.g. a large array) with a large stride would have little temporal and spatial locality. For example:
int array[10000][100000];

int i, j, stride = 1000;

for (i in 0 to 10000)

for(j in 0 to 10000, j = j+stride)

sum = sum + array[i][j];

3. A program that repeatedly branches between a few locations, spaced far apart in memory. For example:
while(1)
{

function1Call(params);

function2Call(params);

function3Call(params);

}

4. All accesses miss except for the second reference to 11. Final contents are:
	0
	48

	1
	

	2
	2

	3
	3

	4
	4

	5
	21

	6
	6

	7
	

	8
	

	9
	

	10
	

	11
	11

	12
	

	13
	13

	14
	

	15
	

5. Row major should be faster, since memory is laid out in rows first. This should show a large effect of memory layout.
6. Attach a ‘1’ to the tag coming from the request, and compare it with the stored tag concatenated with the valid bit. Then only the equality comparison is needed.
7. Access time for a) is 16*10+16*1 = 176 cycles. Access time for b) is 4*10+4*1 = 44 cycles. Assuming each bank is 4 words wide, access time for c) is 1*10+16*1 = 26 cycles.

8. AMAT = 1*2ns + .05*20*2ns = 4ns.

9. Since we can’t shorten to fractions of cycles, cache access will have to take 2 cycles now, so AMAT = 2*2ns + .03*20*2ns = 5.2ns, which is not a good trade off.
AMAT for the different organizations is:

	Block size (words)
	Associativity
	Instruction miss rate
	Data miss rate

	1
	1
	2.11
	1.71

	4
	1
	1.82
	1.772

	4
	2
	1.956
	1.924

	4
	4
	1.956
	1.924

The best organization for I cache is a direct mapped cache with 4 word blocks. The best organization for D cache is a direct mapped cache with 1 word blocks.

10. Again, all accesses miss except for the second reference to 11. Final contents are:

	0
	48
	64

	1
	
	

	2
	2
	

	3
	11
	27

	4
	4
	

	5
	21
	13

	6
	22
	6

	7
	
	

11. Hits are highlighted: 2, 3, 11, 16, 21, 13, 64, 48, 19, 11, 3, 22, 4, 27, 6, 11

Final contents are:

	0
	24
	25
	26
	27

	1
	8
	9
	10
	11

	2
	20
	21
	22
	23

	3
	4
	5
	6
	7

12. The total bits for index are log2 [S/(B*A)]
The total bits for the cache are the total of the following:

Bits for data = S*8

Bits for tag = (k - index_bits – b)*S/B

Bits for valid = 1*S/B

13. Cache 1 spends .04*7*I + .06*.5*7*I = .49*I
Cache 2 spends .02*10*I + .04*.5*10*I = 0.4*I

Cache 3 spends .02*10*I + .03*.5*10*I = 0.35*I

Therefore processor 1 spends the most cycles on cache misses.

14. With a direct mapped cache and stride 256, the loop will reference addresses 0 and 256, both of which are mapped to location 0 in the cache, so the cache will miss every time, leading to a miss rate is 100%.

With a direct mapped cache and stride 255, the loop will reference addresses 0, 255, and 510, which are mapped to locations 0, 6, and 7. This will lead to only the 3 initial misses. Since 30,000 references are made, the miss rate is 0.01%.

With a 2-way set associative and stride = 256, the data for 0 and 256 can now be placed in the cache, so only 2 misses of the 20,000 references occur. Thus miss rate is 0.01%.

Lastly, with 2-way set associative and stride = 256, the addresses 0, 255, and 510 will be mapped to 0, 3 and 2. So, like before, only 3 misses occur in 30,000. Miss rate is 0.01%.
