Cpre 381 - Homework 3 Solution
.text

main:

#clear registers

and $11, $11, $0

and $2, $2, $0

and $3, $3, $0

and $4, $4, $0

and $8, $8, $0

load first operand

lui $11, 0x7F80

ori $11, $11, 0x0000

#load second operand

lui $2, 0x3F80

ori $2, $2, 0x0000

#mantissa mask

lui $4, 0x007F

ori $4, $4, 0xFFFF

#hidden bit

lui $8, 0x0080

and $5, $11, $4 #place fraction in R5

and $6, $2, $4 #place fraction in R6

or $5, $5, $8 #add hidden bit

or $6, $6, $8

get exponents and sign bit

srl $9, $11, 31

srl $10, $2, 31

srl $11, $11, 23

srl $2, $2, 23

andi $11, $11, 0x00FF

andi $2, $2, 0x00FF

#determine which number has larger exponent

slt $7, $11, $2

bne $7, $0, Two_bigger

move $3, $11

sub $7, $11, $2

srlv $6, $6, $7

j next

Two_bigger:

move $3, $2

sub $7, $2, $11

srlv $11, $11, $7

next:

at this point, decimal points are aligned

need to check signs

add $7, $9, $10

beq $7, $0, positive

beq $9, $10, both_neg

#decide which is negative

beq $10, $0, first_neg

second number is negative, first is not

slt $7, $5, $6

bne $7, $0, fract2big

sub $5, $5, $6
#sign bit will be positive

j normal

fract2big:

sub $5, $6, $5

move $9, $10

sll $9, $9, 31 #put one in for sign bit

j normal

first_neg:

slt $7, $5, $6

bne $7, $0, fract2bigger

sub $5, $5, $6
#sign bit will be negative

sll $9, $9, 31 #put one in for sign bit

j normal

fract2bigger:

sub $5, $6, $5

and $9, $9, $0
#set sign bit positive

j normal

both_neg:

add $5, $5, $6

sll $9, $9, 31 #put one in for sign bit

j normal

positive:

add $5, $5, $6 #zero will be sign bit

normal:

#check if normalization needed

srl $7, $5, 24

beq $7, $0, No_normal

addi $3, $3, 1

srl $5, $5, 1

No_normal:

sll $3, $3, 23

and $5, $5, $4

or $3, $3, $5

or $3, $3, $9

done:

j done

.end

a)

[image: image1.wmf]667

.

1

6

10

6

5

5

5

=

=

=

+

=

Speedup

ime

ExecutionT

new

b)

[image: image2.wmf]333

.

33

)

100

(

5

333

.

33

3

100

3

=

-

+

=

=

=

=

x

x

ime

ExecutionT

ime

ExecutionT

ime

ExecutionT

ime

ExecutionT

new

new

new

old

Solving for x gives x = 83.333, or 83.33% of the time must be spent on floating point.

Multiplexer – combinational

Comparator – combinational

Incrementer / Decrementer – combinational

Barrel Shifter – combinational

Multiplier – both

Register – sequential

Memory – both

ALU – combinational

CLA-adder – combinational

Latch – sequential

Finite State Machine – both

The muxes used to implement the first bit are shown below. For all other bits, the same configuration is used with the top input row shifted right by the bit position.

Software Solution:

addi rtemp, rs, 0

addi rs, rt, 0

addi rt, rtemp, 0

Hardware Solution:

Can either modify registerfile with another write port, so that both registers can be read, swapped and stored in one cycle, or

Add registers to hold rs and rt, then use an additional clock cycle to write first one, then the other.

For single cycle:

Need to add hardware to combine Instr[15:0] with 16 zeros, and extend the multiplexer at the registerfile writedata input so that either the ALU output, memory output, or the output of the new hardware may be chosen.

For multicycle:

Add same hardware as before. Modify the muxes before the ALU to perform new output + 0. Then output of ALU can be stored as normal in completion of an R type instruction.
Connect the read data output from the registerfile to both registers A and B. Both A and B will now have enables, provided by the control module. Lastly, add a multiplexer to read address port, allowing either Instr[25:21] or Instr[20:16] to be choosen. An additional cycle will be required for all instructions that need two operands.
Mux4_1

63 62 61 60

59 58 57 56

Mux4_1

55 54 53 52

Mux4_1

51 50 49 48

Mux4_1

35 34 33 32

Mux4_1

39 38 37 36

Mux4_1

43 42 41 40

Mux4_1

47 46 45 44

Mux4_1

 3 2 1 0

Mux4_1

 7 6 5 4

Mux4_1

11 10 9 8

Mux4_1

15 14 13 12

Mux4_1

19 18 17 16

Mux4_1

23 22 21 20

Mux4_1

27 26 25 24

Mux4_1

31 30 29 28

Mux4_1

Mux4_1

Mux4_1

Mux4_1

Mux4_1

Mux4_1

Out0

sel[1:0]

sel[1:0]

sel[3:2]

sel[3:2]

sel[3:2]

sel[3:2]

sel[5:4]

_1200311568.unknown

_1200311679.unknown

