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Abstract – With embedded computer systems being a core 
topic in computer engineering, there are typically one or 
more courses in a program that provide varying coverage. 
Many universities offer introductory courses that focus on 
microcontroller-based systems and embedded 
programming. Advanced courses often do not have a 
common focus and are not available until the graduate 
level, leaving a gap in training undergraduates.  At Iowa 
State University, the Department of Electrical and 
Computer Engineering developed a new senior-level 
design course on embedded systems design (CPRE 488) 
that bridges the content between the introductory course 
on microcontrollers (CPRE 211) and a graduate course on 
system-level design (CPRE 588). This paper presents the 
process of developing the integrated series of courses that 
spans early undergraduate to graduate levels, including 
the team approach used. The set of courses and the 
development process should be of interest to educators 
considering expanding or enhancing the curriculum in 
embedded systems. 
 
Index Terms – Embedded systems, Hardware-software co-
design, Problem-based learning, System design methodology  

INTRODUCTION 

The need addressed by the curriculum development described 
in this paper is expressed in the following statement by 
Bordogna [1]: "Most curricula require students to learn in 
unconnected pieces - separate courses whose relationship to 
each other and to the engineering process are not explained 
until late in a baccalaureate education, if ever. Further, an 
engineering education is usually described in terms of a 
curriculum designed to present to students the set of topics 
engineers "need to know," leading to the conclusion that an 
engineering education is a collection of courses. The content 
of the courses may be valuable, but this view of engineering 
education appears to ignore the need for connections and for 
integration - which should be at the core of an engineering 
education." 

We have developed a series of courses spanning several 
years, from introductory to advanced, to engage students in 
different perspectives on the design of embedded computer 

systems. The courses have overlapping and complementary 
content. The first course introduces students to embedded 
system components and embedded programming using both 
bottom-up and top-down techniques. The second course 
emphasizes integration of components into a system 
implementation using advanced tools that support bottom-up 
design.  The third course focuses on high-level abstraction and 
top-down, system-level design methodologies that start with a 
specification model of the system. The courses are integrated 
through a coordinated set of learning outcomes and the use of 
related tools and technologies. In addition, the courses are 
designed with special attention to integrating the lecture and 
laboratory experiences, making explicit the relationships 
between lecture topics and laboratory exercises. 

In this paper, we first introduce the courses. Then we 
present the pedagogical approaches using a design case study. 
We conclude with observations on the courses and 
comparisons to embedded systems education. 

COURSE OVERVIEW 

I.  CPRE 211: Microcontrollers and Digital Systems Design 

CPRE 211 is a sophomore-level course. It was revitalized in 
2001 by introducing an MPC555-based platform called 
PowerBox [2]. The goal was to develop an interesting, 
integrated classroom/laboratory experience for the students. 
Meanwhile, the use of PowerBox and the associated 
CodeWarrior were representative of technology at the time in 
embedded systems design. To achieve the goal, problem-
based learning is emphasized in the lab exercises. Most labs 
are designed to resemble real-world applications in precise 
agriculture.  For example, track meters and sprayer locks. 
There are approximately ten lab exercises performed in groups 
of two or three students and a lab project performed in larger 
groups of students. Students exercise good programming style, 
modular design, debugging skills and teamwork through the 
semester. Most labs have a pre-lab and SKIBLE (SKIll 
BuiLding Exercise) to get students involved more deeply. 

The course is also designed to fully cover the subject of 
microcontroller-based systems design, including embedded 
hardware models, embedded programming in C, simple I/O 
interfaces, assembly programming, mixed C/assembly 
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programming, interrupt-based design, and programming 
advanced I/O devices. Those knowledge areas are covered by 
lecture notes and carefully integrated into the lab exercises.  

II. CPRE 488: Embedded Systems Design 

CPRE 488 is a senior-level course, wherein the goal is to 
develop system-level design experience for the students. It 
was created in fall 2005 to bridge the gap between CPRE 211 
and CPRE 588, and to reflect recent technology 
advancements. Students have studied computer organization 
and operating systems, and optionally software engineering 
and real-time operating systems. This course introduces and 
reviews hardware and software design issues from a system-
level perspective, including hardware/software interfacing, 
compiler techniques, profiling methods, hardware 
accelerators, testing methods, real-time scheduling, 
multiprocessor-based designs, and networked systems. It also 
gives students rich opportunities to exercise software 
engineering methods, including system design processes and 
UML (Uniform Design Language) methods.  The lectures are 
based on Wolf’s [3] book. 

As in CPRE 211, the labs are a significant component and 
are integrated with classroom teaching. The lab platform 
hardware consists of Xilinx Virtex II Pro boards from Digilent 
shown in figure 1. The boards have a Xilinx XC2VP7 FPGA 
chip with 30,816 Logic Cells, 136 18-bit multipliers, 2,448Kb 
of block RAM, two PowerPC 405 processor cores, and 
DRAM support of up to 2GB. They also have rich I/O 
capabilities including Ethernet, USB, Video/audio ports and 
gigabit serial ports, among others. This platform is very close 
to the industry standard.  It exposes the students to the rich 
features and full complexity of contemporary embedded 
systems design toolsets.  The design environment for the labs 
is the Xilinx EDK/ISE development environment, as well as 
VxWorks RTOS to support real time programming. 

 

 
FIGURE 1 

XILINX VIRTEX II DEVELOPMENT BOARD FROM DIGILENT 

 
Most labs are designed for problem-based learning and 

are based on two real-world applications, digital cameras and 
MP3 players. They are interesting applications.  They are also 
good systems to use for demonstrating the concepts of 
performance analysis, profiling methods, hardware accelerator 
design, real-time scheduling, and system testing. There is an 
open-ended capstone project, in which students develop new 
applications based on their lab experiences. Students worked 
in groups of two in the lab exercises and in a team of two or 
three groups in the project. Because of the carefully designed 
lab exercises, all students were able to implement some 
working and impressive systems, including feature-enhanced 
MP3 players, an Internet Radio player, a miniature recording 
studio using the on-board AC97 audio codec, and a 3D 
rendering engine.  

III. CPRE 588:  Embedded Computer Systems 

CPRE 588 is a graduate-level course focusing primarily on 
design methodologies and modeling languages for embedded 
computer systems, as well as various models of computation.  
Graduate students, as well as qualified undergraduate students, 
are allowed to take the course.  CPRE 588 is also offered as a 
distance education course, so the background of the students 
of CPRE 588 is much more diverse than that of either CPRE 
211 or CPRE 488.  Typically, students of CPRE 588 have 
some background in operating systems and real-time concepts, 
as well as networking, algorithm design, and some kind of 
previous embedded systems design experience. 

The embedded systems design methodology taught in 
CPRE 588 is discussed at length in [4], the textbook for the 
course.  The methodology involves starting with a high-level, 
abstract, functional description of an embedded system and 
gradually refining it to be more concrete.  SpecC is a modeling 
language that accompanies the methodology presented in [4].  
It is a C-like language that presents many new constructs that 
are of use to embedded system design, such as communication 
channels, bit vectors, state machines, events and transactions, 
and timing constraints.  The refinement models in the SpecC 
methodology are: 
• Specification Model – High-level, abstract model.  No 

implicit structure or architecture.  Un-timed execution. 
• Architecture Model – Component structure and 

architecture.  Behaviors grouped under top-level 
component behaviors.  Sequential behavior execution.  
Timed model with estimated execution delays. 

• Communcation Model – Component and communication 
bus structure and architecture.  Timing-accurate bus 
protocols.  Timed model with estimated component 
delays. 

• Implementation Model – Cycle-accurate system 
description.  Object code for processors.  Clocked bus 
communications. 
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FIGURE 2 

SPECC DESIGN METHODOLOGY MODELS (FROM [6]) 
 

A number of refinements are made to each model in order 
to progress to the next model.  For instance, to progress from 
the specification model to the architecture model, high-level 
behaviors are partitioned onto distinct processing elements in 
the system, and abstract communication channels are placed to 
communicate between the processing elements in the 
architecture exploration phase.  To progress from the 
architecture model to the communication model, specific 
protocols are selected for the communications channels and 
inlined into the design in the communication synthesis stage.  
The backend stage synthesizes the design to the 
implementation level automatically through the use of tools. 

SystemC is a library of functions for C++ that are similar 
in function to SpecC.  SystemC is also taught in CPRE 588, 
but the emphasis remains on SpecC and the SpecC design 
methodology.   

There are no scheduled laboratory exercises in CPRE 588.  
However, there is a capstone design project completed in 
teams of approximately four students.  The students choose an 
embedded system (for instance, an mp3 player), and go 
through the SpecC design methodology using the system they 
choose.  The students are asked to make a series of 
refinements to their models in order to approach the 
implementation-level model.  

CASE STUDY IN PEDAGOGY 

The pedagogical approaches used to teach system design in 
CPRE 488 are fundamentally different from those used in 
CPRE 588.  In CPRE 588, a high-level, top-down approach to 
system design is presented.  Design begins by specifying the 
functional behavior of the system, and then follows iterative 
refinements leading to an actual implementation.  On the other 
hand, to bridge the gap with introductory courses, CPRE 488 
presents a bottom-up approach to system design.  First, 
components are designed and analyzed, and then the system is 

built from these components.  This approach gives 
undergraduate students a practical understanding of the issues 
surrounding system design.  To highlight the differences 
between the courses, we will first present a common example, 
a digital camera, and then show how it is taught in both CPRE 
488 and CPRE 588.   

The digital camera example used is based on a simplified 
system model described by Vahid and Givargis in [5].  The 
camera system has only one function, to capture, process, and 
store images.  A state diagram of the system is shown in figure 
3.  The task of capturing a picture starts when the user presses 
the shutter button.  At this time, a digital image is captured by 
a CCD (charged-couple device).  The raw pixel data is sent 
from the CCD to the encoding process, which begins 
immediately after capture.  During encoding, the captured 
image is first transformed into the frequency domain using a 
two dimensional forward discrete cosine transform (2-D 
FDCT), then quantized and encoded using Huffman encoding.  
Finally, the resultant JPEG image is stored into memory.  This 
example was chosen as it typifies the tasks that many 
traditional embedded systems perform: obtaining data from 
the environment and processing that data into a usable format.  
The following sections show how this system evolves in the 
differing course design approaches. 

 
FIGURE 3 

STATE DIAGRAM OF THE SIMPLFIED DIGITAL CAMERA EXAMPLE. 
 

I.  CPRE 488 

The digital camera example is used to achieve several of the 
learning objectives in CPRE 488.  The specific learning 
objectives for CPRE 488 that are addressed with the digital 
camera exercises are as follows: 
• Gain an understanding of the working principles of 

embedded systems and their components 
• Learn how to integrate embedded hardware and software 

to meet the functional requirements of embedded 
applications 

• Gain an understanding of basic performance analysis 
 

The first learning objective stated above is achieved 
through the introduction of the use of custom hardware 
components and how they are integrated.  In the case of the 
digital camera exercises in this course, the custom hardware 
component is the camera component and its device driver.  
The Xilinx Virtex II Pro platform used in these exercises 
introduces the students to additional tools and components and 
how to efficiently use them in a cohesive design process.  The 
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second learning objective is achieved by leading the students 
through a structured design process that interchanges the use 
of software and hardware components in the digital camera to 
meet timing requirements of the processing of the image taken 
by the camera.  The third learning objective is achieved by 
using profiling tools to determine the areas of execution that 
require the most improvement to achieve the required level of 
performance in the camera’s image processing. 

In the CPRE 488 lab sequence, students start with an all-
software implementation of the digital camera controller and a 
set of QoS constraints to meet.  Students then traverse the 
design space from the all-software implementation that was 
given, to a mixed hardware/software implementation in order 
to meet the given QoS constraints.  This exercise was 
carefully designed to keep students inside a fixed design flow, 
with the purpose of showing how different design and 
debugging techniques, such as profiling and hardware 
acceleration, are used in a realistic design. 

The first step in this design space exploration is to profile 
the all-software implementation and find the critical functions 
in the design.  Our design environment, Xilinx EDK/ISE, 
allows for software profiling with GNU tools.  The students 
are asked to identify the functions in the software 
implementation that are taking the majority of the execution 
time in the process of encoding the captured image.  A sample 
of the profiling data that the students collect is shown in figure 
4.  As can be seen, the profiling application provides 
information such as the number of calls to a function as well 
as the time spent in that function.  This data is then used to 
guide the design refinements. 

 

 
FIGURE 4 

SAMPLE PROFILING OUTPUT 
 

After the profiling exercise, the students are asked to 
apply some software techniques to improve the design and 
come closer to meet the QoS constraints.  While this step is 
necessary to show the student the software techniques that are 
available for improving computation time, the QoS constraints 
in these exercises have been carefully chosen so that these 
software improvements will not result in meeting the QoS 
constraints.  The students are then asked to identify which 
functions are candidates for implementation in hardware.  This 
decision is made based on profiling data gathered after 
implementing software optimizations for the image encoding. 

In the final exercise involving the digital camera, students 
are asked to integrate a custom hardware component into the 
digital camera system.  This component is provided to the 
students, and they are asked to interface it with their digital 

camera systems.  In this process, the students are able to 
achieve the QoS constraints for the image processing time.  
The students are then asked to profile this new system and 
perform a comparative analysis of the three digital camera 
systems implemented in these exercises (software-only, 
software-only with optimizations, and software-hardware 
hybrid).   

II. CPRE 588 

In CPRE 588, the digital camera example is used to achieve 
the following learning objectives: 
• System-level design of embedded systems comprised of 

both hardware and software 
• Investigate topics ranging from system modeling to 

hardware-software implementation 
The students in CPRE 588 are first introduced to the 

specifications of the digital camera and a functional model, 
which is implemented in SpecC.  Throughout the course, this 
initial functional model is refined to reflect the different steps 
in the design flow of an embedded system comprised of 
hardware and software components.    Students follow the 
design of the digital camera system from specification model 
to implementation model, observing and performing many of 
the refinements in this process.   

Modeling an embedded system, such as the digital 
camera, with SpecC is very useful during the subsequent 
refinement steps.  Figure 5 shows how the digital camera 
system looks through the eyes of a SpecC communication 
model.  In this model, some details about the communication 
have been decided, as well as the partitioning of tasks to 
processing elements.  However, this system is still at a more 
abstract level than the implementation model of the system 
used in 488. 

 

 
FIGURE 5 

SPECC COMMUNICATION MODEL OF THE DIGITAL CAMERA 
SYSTEM (FROM [6]) 
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In [6], it is shown how the same SpecC refinement 
methodology may be used when designing an embedded 
system with SystemC.  The system used in is the digital 
camera example used in this case study.  The modeling of the 
digital camera in SystemC is examined in CPRE 588, and 
comparisons are drawn between the SpecC and SystemC 
modeling languages.  Through this experience, students gain a 
greater appreciation for embedded systems design from a top-
down perspective. 
 

OBSERVATIONS ON COURSE DESIGN AND DELIVERY 

In CPRE 211, the lab exercises and lectures are carefully 
synchronized so that the lecture part and the lab part of a given 
topic are close to each other. This arrangement is particularly 
important for students at the sophomore level. Most of them 
have never seen bitwise operations, assembly code, interrupt 
systems, ADC programming, and the like before this course. It 
is best for them to comprehend the intricate concepts in those 
subjects with both classroom and hand-on experiences. 

A schedule was created in which the lecture and lab parts 
on important topics are at most one week apart. This was not 
trivial.  It required fine-tuning the timing of the lectures and 
labs. The instructor usually starts the first class in each week 
with an introduction to the lab in that week, and makes 
conceptual connections to the related topics in the lectures. 
The lecture notes also use code examples from the lab 
exercises to make direct connections. Overall, students found 
the lab experience interesting and rewarding, while the 
lectures were able to discuss some intricate concepts in depth. 

In CPRE 488, we found that here too it was challenging 
to synchronize the labs and lectures. We believe the issue is 
common to embedded system courses that use contemporary 
toolsets and conventional textbooks. The Xilinx EDK/ISE 
development environment has two interdependent sets of 
tools, one for FPGA hardware design and the other one for 
system software development. To configure and use such an 
environment, students must have full-spectrum knowledge in 
hardware and software.  The lectures are based on Wolf’s 
book [3], which uses a bottom-up organization. Hardware 
topics, such as CPU, memory, I/O and component interfacing 
are introduced before software topics such as profiling, 
performance analysis and real-time scheduling. This 
inconsistency makes it difficult to maintain the connection 
between the lectures and the labs. If this issue is not 
addressed, students may find labs less informative or lectures 
less interesting.  

The teaching staff reorganized the sequence of lectures 
such that the basics of some topics are introduced in the early 
portion of the semester. Within the first six weeks, students 
had exposure to embedded CPUs and memory components, 
common I/O devices, FPGA basics, hardware accelerators, 
and compiler techniques. This reorganization helped prepare 
students for the lab exercises. Although the sequences of some 
topics were broken into two parts, we found that the benefit of 
early full-spectrum exposure more than offset the 
disadvantage. Students were able to maintain a big picture of 

the systems and understood each topic from a system 
perspective.  

We used an instructional team familiar with the 
introductory and advanced courses to develop CPRE 488. The 
team consisted of several faculty responsible for teaching the 
courses, as well as graduate and undergraduate students who 
had done one or more of the following: served as a teaching 
assistant in the CPRE 211 laboratory, taken the CPRE 588 
class, and/or mentored senior design projects on the CPRE 
488 lab platform. The team used a structured approach to 
organize the course and laboratory, via a learning model called 
3C5I that incorporates both Bloom's taxonomy and problem 
based learning. The 3C5I model creates an educational context 
based on Concepts within Courses within a Curriculum 
(3C), and in each, progressing along the five "I's" of 
Introduction, Illustration, Instruction, Investigation, and 
Implementation.  

Problem-based learning may extend through to either 
Investigation or Implementation, and in each case, to differing 
degrees depending on the scope of the problem.  In developing 
the embedded systems course, we considered each learning 
outcome for the course and set targets for the 
level of learning to be accomplished in lecture versus 
laboratory.  That approach guided the timing of presenting 
topics and also the depth of the hands-on exercises in the 
laboratory.  In some cases, the purpose of a lab exercise is 
merely to illustrate a concept introduced in lecture; 
in other cases, to reinforce the instruction given in lecture; and 
in others, to let the student investigate independently through 
more difficult lab work. Using a learning model as the 
foundation facilitated the collaboration of the instructional 
team.  The quality of the course and laboratory was enhanced 
due to the team effort. 

RELATED WORK 

Berkeley’s embedded system design education program [7] 
consists of undergraduate and graduate coursework.  New 
advanced graduate courses in many areas are under 
development to support research results.  One sophomore 
course in the area exists.  Efforts are currently under way to 
develop a junior/senior level course in mixed hardware-
software systems design, similar to CPRE 488.  There are also 
plans to develop courses based on the theoretical foundations 
of embedded systems design. 

Carnegie Mellon [8] differentiates between the many 
application areas of embedded computer systems, and aims to 
give a broad, if not complete, exposure to these areas within 
its undergraduate curriculum.  Many of the courses are taught 
as capstone design courses.  Some areas of emphasis include 
control systems, signal processing, systems-on-chip, 
networking, critical systems, robotics, and security. 

Embedded systems education at Vanderbilt [9] takes a 
model-based approach.  Due to faculty size constraints, a 
minimal number of technical elective courses were added to 
introduce a specialization in embedded systems design.  There 
are efforts underway to integrate and revise courses in systems 
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science and computer science to better accommodate 
embedded systems education. 

An embedded systems curriculum is presented in [10].  It 
identifies sixteen core educational areas essential to such a 
curriculum, with emphasis being placed on programming 
fundamentals, digital logic design, computer architecture, 
software engineering, systems performance, and embedded 
systems design. 

A survey work by the European Artist Education Group, 
[11], identifies several challenges for developing a curriculum 
in embedded systems, as well as key bodies of knowledge that 
should be included.  The group emphasizes the need for lab 
experiences to strengthen understanding of core themes, which 
has been one of the forefronts of our course development.  
However, the bodies of knowledge are targeted for an entire 
graduate curriculum and are broad in scope.  Our work is a 
stream of embedded courses from undergraduate to graduate 
level and thus is bounded by what can be covered in a few 
semesters’ time. 

Lastly, a didactic analysis of embedded systems education 
[12] suggests that the subject will be best taught through 
functional examples in an interactive setting.  The lab 
sequence for CPRE 488 provides two such in depth examples 
that allow students to gain a deep familiarity with the material. 

FUTURE WORK 

The department is considering two changes to the existing 
embedded course sequence. First, CPRE 211 may be revised 
again to reflect recent technology advances and application 
changes. Its strength in problem-based learning will be kept, 
and new applications such as robot control and sensor systems 
may be introduced.  Also, a new course is being considered to 
fill the gap between CPRE 211 and CPRE 488. It will be 
focused on embedded applications of intermediate complexity 
such as DSP systems, handheld computers, and network 
processor-based systems. CPRE 211 will remain an 
introductory course, and CPRE 488 will be more focused on 
the hands-on experience of hardware/software co-design. 

CONCLUSION 

To effectively prepare embedded systems engineers at Iowa 
State University, a series of courses have been developed.  
The courses are designed to provide an interactive, problem-
based experience that encourages a deep understanding of 
system design issues and methodologies.  The introductory 
course material focuses on building an understanding of basic 
but necessary concepts such as programming microcontrollers 
and designing applications to use interrupts.  As students 
progress through the course sequence, the next course 
continues to build on the knowledge gained by teaching 
system design from a bottom-up approach.  Finally, when the 
graduate level is reached, students are taught to design 
systems from the top-down. 

As seen in the related work, embedded design is an 
exciting field for educators, albeit one that is difficult to 
properly address as it encompasses many existing engineering 
disciplines.  In developing this course sequence, we have been 

able to tie the myriad of concepts together into a cohesive 
learning experience.  There is still work to be to determine 
what concepts need more or less emphasis and to continue to 
provide the functional skills that will keep graduates current 
with the ever-changing face of embedded systems. 
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