
Session ____

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

Developing and Teaching an Integrated Series of
Courses in Embedded Computer Systems

Mikel Bezdek1, Daniel Helvick2, Ramon Mercado3, Diane Rover4, Akhilesh Tyagi5, Zhao Zhang6

1 Mikel Bezdek, Graduate Student, Computer Engineering, Iowa State University, mbezdek@iastate.edu
2 Daniel Helvick, Graduate Student, Computer Engineering, Iowa State University, dhelvick@iastate.edu
3 Ramon Mercado, Graduate Student, Computer Engineering, Iowa State University, rmercado@iastate.edu
4 Diane Rover, Associate Dean, College of Engineering, Iowa State University, drover@iastate.edu
5 Akhilesh Tyagi, Assistant Professor, Department of Electrical and Computer Engineering, Iowa State University, tyagi@iastate.ed
6 Zhao Zhang, Assistant Professor, Department of Electrical and Computer Engineering, Iowa State University, zzhang@iastate.edu

Abstract – With embedded computer systems being a core
topic in computer engineering, there are typically one or
more courses in a program that provide varying coverage.
Many universities offer introductory courses that focus on
microcontroller-based systems and embedded
programming. Advanced courses often do not have a
common focus and are not available until the graduate
level, leaving a gap in training undergraduates. At Iowa
State University, the Department of Electrical and
Computer Engineering developed a new senior-level
design course on embedded systems design (CPRE 488)
that bridges the content between the introductory course
on microcontrollers (CPRE 211) and a graduate course on
system-level design (CPRE 588). This paper presents the
process of developing the integrated series of courses that
spans early undergraduate to graduate levels, including
the team approach used. The set of courses and the
development process should be of interest to educators
considering expanding or enhancing the curriculum in
embedded systems.

Index Terms – Embedded systems, Hardware-software co-
design, Problem-based learning, System design methodology

INTRODUCTION

The need addressed by the curriculum development described
in this paper is expressed in the following statement by
Bordogna [1]: "Most curricula require students to learn in
unconnected pieces - separate courses whose relationship to
each other and to the engineering process are not explained
until late in a baccalaureate education, if ever. Further, an
engineering education is usually described in terms of a
curriculum designed to present to students the set of topics
engineers "need to know," leading to the conclusion that an
engineering education is a collection of courses. The content
of the courses may be valuable, but this view of engineering
education appears to ignore the need for connections and for
integration - which should be at the core of an engineering
education."

We have developed a series of courses spanning several
years, from introductory to advanced, to engage students in
different perspectives on the design of embedded computer

systems. The courses have overlapping and complementary
content. The first course introduces students to embedded
system components and embedded programming using both
bottom-up and top-down techniques. The second course
emphasizes integration of components into a system
implementation using advanced tools that support bottom-up
design. The third course focuses on high-level abstraction and
top-down, system-level design methodologies that start with a
specification model of the system. The courses are integrated
through a coordinated set of learning outcomes and the use of
related tools and technologies. In addition, the courses are
designed with special attention to integrating the lecture and
laboratory experiences, making explicit the relationships
between lecture topics and laboratory exercises.

In this paper, we first introduce the courses. Then we
present the pedagogical approaches using a design case study.
We conclude with observations on the courses and
comparisons to embedded systems education.

COURSE OVERVIEW

I. CPRE 211: Microcontrollers and Digital Systems Design

CPRE 211 is a sophomore-level course. It was revitalized in
2001 by introducing an MPC555-based platform called
PowerBox [2]. The goal was to develop an interesting,
integrated classroom/laboratory experience for the students.
Meanwhile, the use of PowerBox and the associated
CodeWarrior were representative of technology at the time in
embedded systems design. To achieve the goal, problem-
based learning is emphasized in the lab exercises. Most labs
are designed to resemble real-world applications in precise
agriculture. For example, track meters and sprayer locks.
There are approximately ten lab exercises performed in groups
of two or three students and a lab project performed in larger
groups of students. Students exercise good programming style,
modular design, debugging skills and teamwork through the
semester. Most labs have a pre-lab and SKIBLE (SKIll
BuiLding Exercise) to get students involved more deeply.

The course is also designed to fully cover the subject of
microcontroller-based systems design, including embedded
hardware models, embedded programming in C, simple I/O
interfaces, assembly programming, mixed C/assembly

Session ____

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

programming, interrupt-based design, and programming
advanced I/O devices. Those knowledge areas are covered by
lecture notes and carefully integrated into the lab exercises.

II. CPRE 488: Embedded Systems Design

CPRE 488 is a senior-level course, wherein the goal is to
develop system-level design experience for the students. It
was created in fall 2005 to bridge the gap between CPRE 211
and CPRE 588, and to reflect recent technology
advancements. Students have studied computer organization
and operating systems, and optionally software engineering
and real-time operating systems. This course introduces and
reviews hardware and software design issues from a system-
level perspective, including hardware/software interfacing,
compiler techniques, profiling methods, hardware
accelerators, testing methods, real-time scheduling,
multiprocessor-based designs, and networked systems. It also
gives students rich opportunities to exercise software
engineering methods, including system design processes and
UML (Uniform Design Language) methods. The lectures are
based on Wolf’s [3] book.

As in CPRE 211, the labs are a significant component and
are integrated with classroom teaching. The lab platform
hardware consists of Xilinx Virtex II Pro boards from Digilent
shown in figure 1. The boards have a Xilinx XC2VP7 FPGA
chip with 30,816 Logic Cells, 136 18-bit multipliers, 2,448Kb
of block RAM, two PowerPC 405 processor cores, and
DRAM support of up to 2GB. They also have rich I/O
capabilities including Ethernet, USB, Video/audio ports and
gigabit serial ports, among others. This platform is very close
to the industry standard. It exposes the students to the rich
features and full complexity of contemporary embedded
systems design toolsets. The design environment for the labs
is the Xilinx EDK/ISE development environment, as well as
VxWorks RTOS to support real time programming.

FIGURE 1

XILINX VIRTEX II DEVELOPMENT BOARD FROM DIGILENT

Most labs are designed for problem-based learning and

are based on two real-world applications, digital cameras and
MP3 players. They are interesting applications. They are also
good systems to use for demonstrating the concepts of
performance analysis, profiling methods, hardware accelerator
design, real-time scheduling, and system testing. There is an
open-ended capstone project, in which students develop new
applications based on their lab experiences. Students worked
in groups of two in the lab exercises and in a team of two or
three groups in the project. Because of the carefully designed
lab exercises, all students were able to implement some
working and impressive systems, including feature-enhanced
MP3 players, an Internet Radio player, a miniature recording
studio using the on-board AC97 audio codec, and a 3D
rendering engine.

III. CPRE 588: Embedded Computer Systems

CPRE 588 is a graduate-level course focusing primarily on
design methodologies and modeling languages for embedded
computer systems, as well as various models of computation.
Graduate students, as well as qualified undergraduate students,
are allowed to take the course. CPRE 588 is also offered as a
distance education course, so the background of the students
of CPRE 588 is much more diverse than that of either CPRE
211 or CPRE 488. Typically, students of CPRE 588 have
some background in operating systems and real-time concepts,
as well as networking, algorithm design, and some kind of
previous embedded systems design experience.

The embedded systems design methodology taught in
CPRE 588 is discussed at length in [4], the textbook for the
course. The methodology involves starting with a high-level,
abstract, functional description of an embedded system and
gradually refining it to be more concrete. SpecC is a modeling
language that accompanies the methodology presented in [4].
It is a C-like language that presents many new constructs that
are of use to embedded system design, such as communication
channels, bit vectors, state machines, events and transactions,
and timing constraints. The refinement models in the SpecC
methodology are:
• Specification Model – High-level, abstract model. No

implicit structure or architecture. Un-timed execution.
• Architecture Model – Component structure and

architecture. Behaviors grouped under top-level
component behaviors. Sequential behavior execution.
Timed model with estimated execution delays.

• Communcation Model – Component and communication
bus structure and architecture. Timing-accurate bus
protocols. Timed model with estimated component
delays.

• Implementation Model – Cycle-accurate system
description. Object code for processors. Clocked bus
communications.

Session ____

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

FIGURE 2

SPECC DESIGN METHODOLOGY MODELS (FROM [6])

A number of refinements are made to each model in order
to progress to the next model. For instance, to progress from
the specification model to the architecture model, high-level
behaviors are partitioned onto distinct processing elements in
the system, and abstract communication channels are placed to
communicate between the processing elements in the
architecture exploration phase. To progress from the
architecture model to the communication model, specific
protocols are selected for the communications channels and
inlined into the design in the communication synthesis stage.
The backend stage synthesizes the design to the
implementation level automatically through the use of tools.

SystemC is a library of functions for C++ that are similar
in function to SpecC. SystemC is also taught in CPRE 588,
but the emphasis remains on SpecC and the SpecC design
methodology.

There are no scheduled laboratory exercises in CPRE 588.
However, there is a capstone design project completed in
teams of approximately four students. The students choose an
embedded system (for instance, an mp3 player), and go
through the SpecC design methodology using the system they
choose. The students are asked to make a series of
refinements to their models in order to approach the
implementation-level model.

CASE STUDY IN PEDAGOGY

The pedagogical approaches used to teach system design in
CPRE 488 are fundamentally different from those used in
CPRE 588. In CPRE 588, a high-level, top-down approach to
system design is presented. Design begins by specifying the
functional behavior of the system, and then follows iterative
refinements leading to an actual implementation. On the other
hand, to bridge the gap with introductory courses, CPRE 488
presents a bottom-up approach to system design. First,
components are designed and analyzed, and then the system is

built from these components. This approach gives
undergraduate students a practical understanding of the issues
surrounding system design. To highlight the differences
between the courses, we will first present a common example,
a digital camera, and then show how it is taught in both CPRE
488 and CPRE 588.

The digital camera example used is based on a simplified
system model described by Vahid and Givargis in [5]. The
camera system has only one function, to capture, process, and
store images. A state diagram of the system is shown in figure
3. The task of capturing a picture starts when the user presses
the shutter button. At this time, a digital image is captured by
a CCD (charged-couple device). The raw pixel data is sent
from the CCD to the encoding process, which begins
immediately after capture. During encoding, the captured
image is first transformed into the frequency domain using a
two dimensional forward discrete cosine transform (2-D
FDCT), then quantized and encoded using Huffman encoding.
Finally, the resultant JPEG image is stored into memory. This
example was chosen as it typifies the tasks that many
traditional embedded systems perform: obtaining data from
the environment and processing that data into a usable format.
The following sections show how this system evolves in the
differing course design approaches.

FIGURE 3

STATE DIAGRAM OF THE SIMPLFIED DIGITAL CAMERA EXAMPLE.

I. CPRE 488

The digital camera example is used to achieve several of the
learning objectives in CPRE 488. The specific learning
objectives for CPRE 488 that are addressed with the digital
camera exercises are as follows:
• Gain an understanding of the working principles of

embedded systems and their components
• Learn how to integrate embedded hardware and software

to meet the functional requirements of embedded
applications

• Gain an understanding of basic performance analysis

The first learning objective stated above is achieved
through the introduction of the use of custom hardware
components and how they are integrated. In the case of the
digital camera exercises in this course, the custom hardware
component is the camera component and its device driver.
The Xilinx Virtex II Pro platform used in these exercises
introduces the students to additional tools and components and
how to efficiently use them in a cohesive design process. The

Session ____

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

second learning objective is achieved by leading the students
through a structured design process that interchanges the use
of software and hardware components in the digital camera to
meet timing requirements of the processing of the image taken
by the camera. The third learning objective is achieved by
using profiling tools to determine the areas of execution that
require the most improvement to achieve the required level of
performance in the camera’s image processing.

In the CPRE 488 lab sequence, students start with an all-
software implementation of the digital camera controller and a
set of QoS constraints to meet. Students then traverse the
design space from the all-software implementation that was
given, to a mixed hardware/software implementation in order
to meet the given QoS constraints. This exercise was
carefully designed to keep students inside a fixed design flow,
with the purpose of showing how different design and
debugging techniques, such as profiling and hardware
acceleration, are used in a realistic design.

The first step in this design space exploration is to profile
the all-software implementation and find the critical functions
in the design. Our design environment, Xilinx EDK/ISE,
allows for software profiling with GNU tools. The students
are asked to identify the functions in the software
implementation that are taking the majority of the execution
time in the process of encoding the captured image. A sample
of the profiling data that the students collect is shown in figure
4. As can be seen, the profiling application provides
information such as the number of calls to a function as well
as the time spent in that function. This data is then used to
guide the design refinements.

FIGURE 4

SAMPLE PROFILING OUTPUT

After the profiling exercise, the students are asked to
apply some software techniques to improve the design and
come closer to meet the QoS constraints. While this step is
necessary to show the student the software techniques that are
available for improving computation time, the QoS constraints
in these exercises have been carefully chosen so that these
software improvements will not result in meeting the QoS
constraints. The students are then asked to identify which
functions are candidates for implementation in hardware. This
decision is made based on profiling data gathered after
implementing software optimizations for the image encoding.

In the final exercise involving the digital camera, students
are asked to integrate a custom hardware component into the
digital camera system. This component is provided to the
students, and they are asked to interface it with their digital

camera systems. In this process, the students are able to
achieve the QoS constraints for the image processing time.
The students are then asked to profile this new system and
perform a comparative analysis of the three digital camera
systems implemented in these exercises (software-only,
software-only with optimizations, and software-hardware
hybrid).

II. CPRE 588

In CPRE 588, the digital camera example is used to achieve
the following learning objectives:
• System-level design of embedded systems comprised of

both hardware and software
• Investigate topics ranging from system modeling to

hardware-software implementation
The students in CPRE 588 are first introduced to the

specifications of the digital camera and a functional model,
which is implemented in SpecC. Throughout the course, this
initial functional model is refined to reflect the different steps
in the design flow of an embedded system comprised of
hardware and software components. Students follow the
design of the digital camera system from specification model
to implementation model, observing and performing many of
the refinements in this process.

Modeling an embedded system, such as the digital
camera, with SpecC is very useful during the subsequent
refinement steps. Figure 5 shows how the digital camera
system looks through the eyes of a SpecC communication
model. In this model, some details about the communication
have been decided, as well as the partitioning of tasks to
processing elements. However, this system is still at a more
abstract level than the implementation model of the system
used in 488.

FIGURE 5

SPECC COMMUNICATION MODEL OF THE DIGITAL CAMERA
SYSTEM (FROM [6])

Session ____

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

In [6], it is shown how the same SpecC refinement
methodology may be used when designing an embedded
system with SystemC. The system used in is the digital
camera example used in this case study. The modeling of the
digital camera in SystemC is examined in CPRE 588, and
comparisons are drawn between the SpecC and SystemC
modeling languages. Through this experience, students gain a
greater appreciation for embedded systems design from a top-
down perspective.

OBSERVATIONS ON COURSE DESIGN AND DELIVERY

In CPRE 211, the lab exercises and lectures are carefully
synchronized so that the lecture part and the lab part of a given
topic are close to each other. This arrangement is particularly
important for students at the sophomore level. Most of them
have never seen bitwise operations, assembly code, interrupt
systems, ADC programming, and the like before this course. It
is best for them to comprehend the intricate concepts in those
subjects with both classroom and hand-on experiences.

A schedule was created in which the lecture and lab parts
on important topics are at most one week apart. This was not
trivial. It required fine-tuning the timing of the lectures and
labs. The instructor usually starts the first class in each week
with an introduction to the lab in that week, and makes
conceptual connections to the related topics in the lectures.
The lecture notes also use code examples from the lab
exercises to make direct connections. Overall, students found
the lab experience interesting and rewarding, while the
lectures were able to discuss some intricate concepts in depth.

In CPRE 488, we found that here too it was challenging
to synchronize the labs and lectures. We believe the issue is
common to embedded system courses that use contemporary
toolsets and conventional textbooks. The Xilinx EDK/ISE
development environment has two interdependent sets of
tools, one for FPGA hardware design and the other one for
system software development. To configure and use such an
environment, students must have full-spectrum knowledge in
hardware and software. The lectures are based on Wolf’s
book [3], which uses a bottom-up organization. Hardware
topics, such as CPU, memory, I/O and component interfacing
are introduced before software topics such as profiling,
performance analysis and real-time scheduling. This
inconsistency makes it difficult to maintain the connection
between the lectures and the labs. If this issue is not
addressed, students may find labs less informative or lectures
less interesting.

The teaching staff reorganized the sequence of lectures
such that the basics of some topics are introduced in the early
portion of the semester. Within the first six weeks, students
had exposure to embedded CPUs and memory components,
common I/O devices, FPGA basics, hardware accelerators,
and compiler techniques. This reorganization helped prepare
students for the lab exercises. Although the sequences of some
topics were broken into two parts, we found that the benefit of
early full-spectrum exposure more than offset the
disadvantage. Students were able to maintain a big picture of

the systems and understood each topic from a system
perspective.

We used an instructional team familiar with the
introductory and advanced courses to develop CPRE 488. The
team consisted of several faculty responsible for teaching the
courses, as well as graduate and undergraduate students who
had done one or more of the following: served as a teaching
assistant in the CPRE 211 laboratory, taken the CPRE 588
class, and/or mentored senior design projects on the CPRE
488 lab platform. The team used a structured approach to
organize the course and laboratory, via a learning model called
3C5I that incorporates both Bloom's taxonomy and problem
based learning. The 3C5I model creates an educational context
based on Concepts within Courses within a Curriculum
(3C), and in each, progressing along the five "I's" of
Introduction, Illustration, Instruction, Investigation, and
Implementation.

Problem-based learning may extend through to either
Investigation or Implementation, and in each case, to differing
degrees depending on the scope of the problem. In developing
the embedded systems course, we considered each learning
outcome for the course and set targets for the
level of learning to be accomplished in lecture versus
laboratory. That approach guided the timing of presenting
topics and also the depth of the hands-on exercises in the
laboratory. In some cases, the purpose of a lab exercise is
merely to illustrate a concept introduced in lecture;
in other cases, to reinforce the instruction given in lecture; and
in others, to let the student investigate independently through
more difficult lab work. Using a learning model as the
foundation facilitated the collaboration of the instructional
team. The quality of the course and laboratory was enhanced
due to the team effort.

RELATED WORK

Berkeley’s embedded system design education program [7]
consists of undergraduate and graduate coursework. New
advanced graduate courses in many areas are under
development to support research results. One sophomore
course in the area exists. Efforts are currently under way to
develop a junior/senior level course in mixed hardware-
software systems design, similar to CPRE 488. There are also
plans to develop courses based on the theoretical foundations
of embedded systems design.

Carnegie Mellon [8] differentiates between the many
application areas of embedded computer systems, and aims to
give a broad, if not complete, exposure to these areas within
its undergraduate curriculum. Many of the courses are taught
as capstone design courses. Some areas of emphasis include
control systems, signal processing, systems-on-chip,
networking, critical systems, robotics, and security.

Embedded systems education at Vanderbilt [9] takes a
model-based approach. Due to faculty size constraints, a
minimal number of technical elective courses were added to
introduce a specialization in embedded systems design. There
are efforts underway to integrate and revise courses in systems

Session ____

1-4244-0257-3/06/$20.00 © 2006 IEEE October 28 – 31, 2006, San Diego, CA
36th ASEE/IEEE Frontiers in Education Conference

science and computer science to better accommodate
embedded systems education.

An embedded systems curriculum is presented in [10]. It
identifies sixteen core educational areas essential to such a
curriculum, with emphasis being placed on programming
fundamentals, digital logic design, computer architecture,
software engineering, systems performance, and embedded
systems design.

A survey work by the European Artist Education Group,
[11], identifies several challenges for developing a curriculum
in embedded systems, as well as key bodies of knowledge that
should be included. The group emphasizes the need for lab
experiences to strengthen understanding of core themes, which
has been one of the forefronts of our course development.
However, the bodies of knowledge are targeted for an entire
graduate curriculum and are broad in scope. Our work is a
stream of embedded courses from undergraduate to graduate
level and thus is bounded by what can be covered in a few
semesters’ time.

Lastly, a didactic analysis of embedded systems education
[12] suggests that the subject will be best taught through
functional examples in an interactive setting. The lab
sequence for CPRE 488 provides two such in depth examples
that allow students to gain a deep familiarity with the material.

FUTURE WORK

The department is considering two changes to the existing
embedded course sequence. First, CPRE 211 may be revised
again to reflect recent technology advances and application
changes. Its strength in problem-based learning will be kept,
and new applications such as robot control and sensor systems
may be introduced. Also, a new course is being considered to
fill the gap between CPRE 211 and CPRE 488. It will be
focused on embedded applications of intermediate complexity
such as DSP systems, handheld computers, and network
processor-based systems. CPRE 211 will remain an
introductory course, and CPRE 488 will be more focused on
the hands-on experience of hardware/software co-design.

CONCLUSION

To effectively prepare embedded systems engineers at Iowa
State University, a series of courses have been developed.
The courses are designed to provide an interactive, problem-
based experience that encourages a deep understanding of
system design issues and methodologies. The introductory
course material focuses on building an understanding of basic
but necessary concepts such as programming microcontrollers
and designing applications to use interrupts. As students
progress through the course sequence, the next course
continues to build on the knowledge gained by teaching
system design from a bottom-up approach. Finally, when the
graduate level is reached, students are taught to design
systems from the top-down.

As seen in the related work, embedded design is an
exciting field for educators, albeit one that is difficult to
properly address as it encompasses many existing engineering
disciplines. In developing this course sequence, we have been

able to tie the myriad of concepts together into a cohesive
learning experience. There is still work to be to determine
what concepts need more or less emphasis and to continue to
provide the functional skills that will keep graduates current
with the ever-changing face of embedded systems.

ACKNOWLEDGEMENTS

This work was partially supported under NSF grant no. EEC-
0088071, and through support from Rockwell Collins
Foundation and Xilinx, Inc.

We gratefully acknowledge the contributions of Andrew
Larson, Jason Boyd, Joe Schneider, Robert Walstrom, and Jeff
Parent to the development of the CPRE 488 laboratory.

REFERENCES
[1] J. Bordogna, “Next generation Engineering: Innovation Through

Integration,” Keynote Address, NSF Engineering Education Innovator’s
Conference, April 8, 1997, www.nsf.gov/od/lpa/forum/bordogna/jb-
eeic.htm

[2] A. Striegel, D. Rover, “Evolution of an Introduction to Embedded
Systems Laboratory,” Frontiers in Education (FIE), Nov. 2002.

[3] Wayne Wolf, “Computer as Components: Principles of Embedded
Computing System Design,” Morgan Kaufmann Publishers, 2001.

[4] Daniel Gajski, Jianwen Zhu, Rainer Domer, Andreas Gerstlauer, Suging
Zhao, “SpecC: Specification Language and Methodology”, Springer,
2000.

[5] F. Vahid and T. Givargis, “Embedded System Design: A Unified
Hardware/Software Introduction”, John Wiley and Sons, 2002.

[6] Robert Walstrom, “System Level Design Refinement Using SystemC”,
Iowa State University, 2004

[7] Sangiovanni-Vincentelli, A. L. and Pinto, A. “An overview of
embedded system design education at Berkeley.” Trans. on Embedded
Computing Sys. 4, 3 (Aug. 2005), 472-499.

[8] Koopman, P. et al. “Undergraduate embedded system education at
Carnegie Mellon.” Trans. on Embedded Computing Sys. 4, 3 (Aug.
2005), 500-528.

[9] Sztipanovits, J. et al. “Introducing embedded software and systems
education and advanced learning technology in an engineering
curriculum.” Trans. on Embedded Computing Sys. 4, 3 (Aug. 2005),
549-568.

[10] Seviora, R. E. “A curriculum for embedded system engineering.” Trans.
on Embedded Computing Sys. 4, 3 (Aug. 2005), 569-586.

[11] Caspi, P. et al. “Guidelines for a graduate curriculum on embedded
software and systems.” Trans. on Embedded Computing Sys. 4, 3 (Aug.
2005), 587-611.

[12] Grimheden, M. and Törngren, M. 2005. “What is embedded systems and
how should it be taught? -results from a didactic analysis.” Trans. on
Embedded Computing Sys. 4, 3 (Aug. 2005), 633-651.

[13] CPRE 211 class URL: http://class.ece.iastate.edu/cpre211/

[14] CPRE 488 class URL: http://class.ece.iastate.edu/cpre488/

[15] CPRE 588 class URL: http://class.ece.iastate.edu/cpre588/

